@@ -145,34 +145,23 @@ def get_fit(self):
145145 Estimation of Generalized Linear Models with High-Dimensional
146146 k-way fixed effects': https://arxiv.org/pdf/1707.01815
147147 """
148- _Y = self ._Y
149- _X = self ._X
150- _fe = self ._fe
151- _N = self ._N
152- _convergence = self .convergence # False
153- _maxiter = self .maxiter
154- _tol = self .tol
155- _fixef_tol = self ._fixef_tol
156- _fixef_maxiter = self ._fixef_maxiter
157- _solver = self ._solver
158-
159148 # initialize
160149
161- beta = np .zeros (_X .shape [1 ])
162- eta = np .zeros (_N )
150+ beta = np .zeros (self . _X .shape [1 ])
151+ eta = np .zeros (self . _N )
163152 mu = self ._get_mu (theta = eta )
164- deviance = self ._get_deviance (_Y .flatten (), mu )
153+ deviance = self ._get_deviance (self . _Y .flatten (), mu )
165154 deviance_old = deviance .copy () + 1
166155
167- for r in range (_maxiter ):
156+ for r in range (self . maxiter ):
168157 if r == 0 :
169158 pass
170159 else :
171160 converged = self ._check_convergence (
172161 crit = self ._get_diff (deviance = deviance , last = deviance_old ),
173- tol = _tol ,
162+ tol = self . tol ,
174163 r = r ,
175- maxiter = _maxiter ,
164+ maxiter = self . maxiter ,
176165 model = self ._method ,
177166 )
178167 if converged :
@@ -184,19 +173,19 @@ def get_fit(self):
184173
185174 # Step 2: _get v_tilde(r-1) and X_tilde(r-1) (eq. 3.2)
186175 W_tilde = self ._update_W_tilde (W = W )
187- X_tilde = self ._update_X_tilde (W_tilde = W_tilde , X = _X )
176+ X_tilde = self ._update_X_tilde (W_tilde = W_tilde , X = self . _X )
188177 v_tilde = self ._update_v_tilde (
189- y = _Y .flatten (), mu = mu , W_tilde = W_tilde .flatten (), detadmu = detadmu
178+ y = self . _Y .flatten (), mu = mu , W_tilde = W_tilde .flatten (), detadmu = detadmu
190179 )
191180
192181 # Step 3 compute v_dotdot(r-1) and X_dotdot(r-1) - demeaning
193182 v_dotdot , X_dotdot = self .residualize (
194183 v = v_tilde ,
195184 X = X_tilde ,
196- flist = _fe ,
185+ flist = self . _fe ,
197186 weights = W_tilde .flatten (),
198- tol = _fixef_tol ,
199- maxiter = _fixef_maxiter ,
187+ tol = self . _fixef_tol ,
188+ maxiter = self . _fixef_maxiter ,
200189 )
201190
202191 # Step 4: compute (beta(r) - beta(r-1)) and check for convergence, _update beta(r-1) s(eq. 3.5)
@@ -209,7 +198,7 @@ def get_fit(self):
209198 deviance_old = deviance .copy ()
210199
211200 beta , eta , mu , deviance = self ._update_eta_step_halfing (
212- Y = _Y ,
201+ Y = self . _Y ,
213202 beta = beta ,
214203 eta = eta ,
215204 mu = mu ,
@@ -245,7 +234,7 @@ def get_fit(self):
245234 self ._scores_response = self ._u_hat_response [:, None ] * self ._X
246235 self ._scores_working = self ._u_hat_working [:, None ] * self ._X
247236
248- self ._scores = self ._get_score (y = _Y .flatten (), X = _X , mu = mu , eta = eta )
237+ self ._scores = self ._get_score (y = self . _Y .flatten (), X = self . _X , mu = mu , eta = eta )
249238
250239 self ._u_hat = self ._u_hat_working
251240 self ._tZX = np .transpose (self ._Z ) @ self ._X
@@ -255,7 +244,7 @@ def get_fit(self):
255244 self ._hessian = X_dotdot .T @ X_dotdot
256245 self .deviance = deviance
257246
258- if _convergence :
247+ if self . convergence :
259248 self ._convergence = True
260249
261250 def _vcov_iid (self ):
0 commit comments