Skip to content

twinklerink/just_for_fun

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 

Repository files navigation

Existence & Uniqueness

  • md notes
  • matplotlib vector field

简谐运动的微分方程:

$$ m\ddot{x} + kx = 0 $$

考虑阻力(阻尼振动,阻力常数$\mu$与速率成正比):

$$ m\ddot{x} - \mu\dot{x}+ kx = 0 $$

单摆的运动方程:

$$ l\ddot{\theta} + g\sin(\theta) = 0$$

考虑阻力(阻尼振动,阻力常数$\mu$与速率成正比):

$$ l\ddot{\theta} - \mu\dot{\theta}+ g\sin(\theta) = 0 $$

思路

  • 纵轴为一阶导
  • 横轴为原函数

简谐运动(无阻力)

$m\ddot{x} + kx = 0$用角频率 $\omega = \sqrt{\frac{k}{m}}$ 表示为:

$$ \ddot{x} + \omega^2x = 0 $$

又有

$$ \ddot{x} = \frac{\mathrm{d}}{\mathrm{d}t}\dot{x} $$

这是一个

$ \begin{pmatrix} \ddot{x} \ \dot{x} \end{pmatrix}

\begin{pmatrix} \ddot{x} \ \dot{x} \end{pmatrix}$ $

About

整活向

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages