Skip to content

๐Ÿš€ End-to-End ML Pipeline with DVC & MLflow ๐Ÿ”๐Ÿ“Š A hands-on, production-ready ML pipeline built from scratch โ€” showcasing data versioning (DVC), experiment tracking (MLflow), and remote collaboration (DagsHub).

Notifications You must be signed in to change notification settings

Ananddd06/End_to_End_ML_Project_with_DagsHub_Mlflow_DVC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

13 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿš€ Project: End-to-End ML Pipeline with DVC & MLflow ๐Ÿ”๐Ÿ“Š

Welcome to a hands-on demo project that showcases how to build a production-grade Machine Learning pipeline from scratch. This project is designed to help you understand and explore:

  • ๐Ÿ“ฆ DVC for data & model versioning
  • โš™๏ธ MLflow for experiment tracking
  • โ˜๏ธ DagsHub for seamless collaboration and remote tracking

๐ŸŽฏ Objective: Train a robust Random Forest Classifier ๐ŸŒฒ on the Pima Indians Diabetes Dataset ๐Ÿงฌ, with a modular and reproducible ML pipeline including:

  • ๐Ÿ” Data Preprocessing
  • ๐Ÿง  Model Training
  • ๐Ÿ“ˆ Model Evaluation

๐ŸŒ ๐Ÿ”— View Live Project on DagsHub โ€“ Explore how DVC, MLflow, and remote pipelines work together in a real-world ML pipeline demo!


๐Ÿ”‘ Key Highlights

๐Ÿ“ฆ Data Versioning with DVC

With DVC, you can:

  • ๐Ÿงฌ Track datasets, models, and code changes
  • โš™๏ธ Structure workflows into stages (preprocess โžก๏ธ train โžก๏ธ evaluate)
  • ๐Ÿ” Automatically re-run affected stages when changes occur
  • โ˜๏ธ Connect to remote data storage (DagsHub/S3) for collaboration

๐Ÿ› ๏ธ Your pipeline becomes:

  • โœ… Modular
  • โœ… Reproducible
  • โœ… Scalable

๐Ÿ“Š Experiment Tracking with MLflow

MLflow allows:

  • ๐Ÿงช Tracking experiments: log parameters, metrics, models
  • ๐Ÿงฎ Comparing runs visually
  • ๐Ÿ“ Optimizing hyperparameters (n_estimators, max_depth, etc.)
  • ๐Ÿ“ฆ Storing & reusing model artifacts

๐Ÿ” โ€œWhat gets measured gets improved.โ€ โ€” With MLflow, you measure everything.


๐Ÿ“ Dataset Used

  • Pima Indians Diabetes Dataset
    ๐Ÿ“Š Medical data for binary classification
    โœ… Balanced features
    โœ… Real-world healthcare relevance

๐Ÿค– Model Used

  • ๐ŸŒฒ Random Forest Classifier
    โœ… Robust
    โœ… Handles missing values well
    โœ… Performs well on tabular data

๐Ÿ“ˆ Final Output

At the end of this project, you will have:

  • ๐ŸŽฏ A complete ML pipeline versioned with DVC
  • โš™๏ธ Multiple model experiments tracked via MLflow
  • โ˜๏ธ Integrated remote storage (DagsHub)
  • ๐Ÿ” Reproducible and scalable pipeline stages

๐Ÿ”ฅ Tech Stack

  • ๐Ÿ Python
  • ๐Ÿ“ฆ DVC
  • โš™๏ธ MLflow
  • โ˜๏ธ DagsHub
  • ๐Ÿ“Š Scikit-learn
  • ๐Ÿงช Pandas, NumPy, Matplotlib

โญ Want to Contribute?

Feel free to fork, โญ star, or raise issues!
Together, letโ€™s build smarter pipelines ๐Ÿ”๐Ÿ’ก


โœ… Built with โค๏ธ by Anand โ€“ Follow for more end-to-end ML & MLOps content!

About

๐Ÿš€ End-to-End ML Pipeline with DVC & MLflow ๐Ÿ”๐Ÿ“Š A hands-on, production-ready ML pipeline built from scratch โ€” showcasing data versioning (DVC), experiment tracking (MLflow), and remote collaboration (DagsHub).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages